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Solving forward Lorentz–Dirac-like equations
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Received 24 September 1996

Abstract. It is shown that successive approximations can be used to implement a numerical
method to integrate forward the Lorentz–Dirac equation, as well as other equations with the
same singular structure. The code automatically selects the physical solution and avoids the so-
called ‘runaway solutions’. The method’s convergence is analytically discussed in a particular
but illustrative case. The convergence is also numerically studied in a capture motion and a
chaotic scattering process.

1. Introduction

When the radiation reaction is taken into account the classical equation of motion of a point
charge is the Lorentz–Dirac equation:

ẍµ = f µ + τ0

(
...
x
µ − ẍ

ν ẍν

c2
ẋµ
)

(1)

where a dot indicates derivative with respect to the proper time,τ , f µ = f µ(τ, x, ẋ) is the
external force per unit mass anḋxµẋµ = −c2. If the external force is the Lorentz force
exerted by an electromagnetic fieldFµν , we have

f µ = e

mc
Fµνẋν . (2)

The parameter

τ0 ≡ 2e2

3mc3
(3)

is, up to a numerical factor, the time that the light needs to travel across a classical electron
radius. Since this defines a very small scale, in many cases one has to use the quantum
theory instead of equation (1), but the latter is a good approximation in some astrophysical
contexts [1].

It is well known that the Lorentz–Dirac equation has some puzzling properties [2, 3],
but we will discuss here only two of the more striking ones: the equation order and the
so-called ‘runaway solutions’. Since it is a third-order equation, the ordinary Newtonian
initial conditions (position and velocity) are not enough to select a solution, one also has
to give the initial acceleration. But the Lorentz–Dirac equation is singular, in the limit
τ0 → 0 we recover a second-order equation. On the other hand, most of the solutions do
not describe any physical motion and must be discarded because they are of the runaway
type, i.e. the acceleration grows exponentially in time.

Except in some simple cases [2–4] one is not able to find explicit solutions for the
Lorentz–Dirac equation and some approximation scheme has to be used. One may use
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some singular perturbation technique to solve a particular problem, but we are interested
here in a general-purpose numerical algorithm to solve the equation for different external
forces with ease and high accuracy. It is obvious that the two properties discussed above
represent a serious obstacle to numerical integration. Even if one has devised a method to
select one of the exceptional initial conditions that lead to a physical solution, the numerical
solution will shift to a runaway one as a consequence of the unavoidable numerical errors
[4–6].

The standard solution to this problem is to impose an asymptotic condition in the future
infinity, usually limτ→∞ aµ = 0, and to integrate backwards in time. The asymptotic
condition effectively reduces the initial conditions to position and velocity and integrating
backward the runaway modes are automatically damped. Recently, Comay [7] has used
a more complete approximation method to describe the asymptotic motion in the remote
future. This kind of method is very useful when it can be applied, but has severe limitations.

First, it can only be directly applied to scattering processes, in which the asymptotic
motion is known. If one wants to study a capture process, the motion in the remote future
from which to start the backward integration is not knowna priori. In principle, one could
use further approximations to describe the asymptotic future in each particular case. In
fact, this has been done by Sawada [8] for a modified Coulombian potential, but anad hoc
charge distribution had to be assumed for the potential source.

Even in scattering cases, imposing initial conditions in the future infinity is rather
contrived. Usually what is known is the initial motion, not the final one. For instance, let
us assume that we want to study the scattering of a test charge by three (or more) stationary
charged centres. The incoming direction and velocity in the infinite past are given and one
has to compute the scattering angle for different impact parameters. As we will see, this kind
of scattering is chaotic [9] and the scattering function has a Cantor set of discontinuities.
Since the test particle spends a very long time in the scattering region for impact parameters
near the discontinuity values, one expects the radiated energy to be important there and the
velocity in the remote future will be very different from the incoming one. One could use
some shooting method to estimate the correct final velocity and scattering angle for each
impact parameter, but the computing power necessary to compute the scattering function
will be very high due to the sensitive dependence on the initial conditions.

The aim of this paper is to show that there is a better alternative. By using a
reasonable physical assumption and a method of successive approximations it is possible to
devise a very general numerical method which allows us to integrate forward the Lorentz–
Dirac equation, as well as other equations with the same singular structure. The physical
assumptions and the approximation method are not new, but the convergence of the method
has not been discussed and its analytical implementation is very cumbersome and has not
been used to perform actual calculations. The contribution of this work is twofold: we
discuss the convergence in a particular but illustrative case and we present a practical
numerical algorithm which may be used to easily test and implement these ideas.

We are aware of two directly related numerical works. Baylis and Huschilt [6] used the
same kind of idea to select, to a high precision, the initial condition corresponding to the
physical solution, but the forward integration of the Lorentz–Dirac equation by a standard
method was unable to avoid the appearance of runaway solutions as a consequence of
numerical rounding-off errors. As we will see in the following, only a consistent application
of the approximation method at each integration step is able to select the physical solution
for large intervals of time. On the other hand, Bel [10] wrote a routine to construct the
order reduction to which the solutions of the delay-differential equations (which describe
the classical electrodynamics of two point charges when the radiation reaction is neglected)
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tend. The aim here is to construct an equation of motion which describes the full electron
motion (and not only its asymptotics) when there is no delay but the radiation reaction is
taken into account.

In section 2 we review how the concept of order reduction and the hypothesis on the
behaviour of the solutions whenτ0 → 0 lead to a Newtonian (i.e. second-order) equation
of motion which has no runaway solution. In section 3 we gain a physical insight into the
method of successive approximations and its convergence is analysed in two special cases.
Section 4 describes the numerical algorithm used to implement the analytical method. To
test the approximation method, in section 5 the routine is applied to the capture of a point
charge by a Coulombian centre of opposite charge and in section 6 to the chaotic scattering
of the same particle around three centres of the same charge. Some final remarks are
collected in section 7.

2. The Newtonian equation of motion

Since the Lorentz–Dirac equation is obtained from conservation principles and most of its
solutions are unphysical, it is reasonable to think that it is not the true equation of motion
for the radiating classical electron, but only one among the conditions the physical solutions
must fulfill. Several authors [2, 4] have shown that by imposing the asymptotic condition
of null acceleration in the future infinity, the Lorentz–Dirac equation can be written in the
form of an integro-differential equation which contains only physical solutions. But this is
again a theory that may by applied only to the scattering process and for it to be useful
one has to know the expression of the external force in terms of the proper time of the test
charge, usually this dependence is unknown until the solution is found.

A more natural approach is provided by the concept of ‘order reduction’. Order
reductions have been used to replace the delay-differential equations which appears in the
electrodynamics of two or more point charges [11, 12] and in nonlinear optics [13]. In the
context of the Lorentz–Dirac equation this concept was partially contained in Landau and
Lifshitz book [14] and was clearly discussed by Kerner [15] and Sanz [16]. The same
concept has also been applied to analyse fourth-order equations that appear in theories of
gravitation with a quadratic Lagrangian [17] and in the study of quantum corrections to
Einstein equations [18].

The physical assumption is that the true equation of motion is a second-order equation

ẍµ = ξµ(τ, x, ẋ; τ0) (4)

with the property that all its solutions satisfy the Lorentz–Dirac equation (1):

ξµ = f µ + τ0

(
∂ξµ

∂τ
+ ∂ξ

µ

∂xν
ẋν + ∂ξ

µ

∂ẋν
ξ ν − ξ

νξν

c2
ẋµ
)
. (5)

In this way, selecting only the initial position and velocity will single out the corresponding
physical solution. In fact, different numerical analyses [7, 8] support the hypothesis that
Newtonian initial conditions are sufficient to obtain the physical solutions.

Of course, we have still to pick out the physical order reduction among the infinitely
many equations (4) satisfying condition (5). To do it, we will use a remark that goes
back at least to Bhabha [19]: the runaway solutions are singular in the limitτ0 → 0 (or,
equivalently,e→ 0). In consequence we will impose the condition

lim
τ0→0

ξµ = f µ (6)
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which will eliminate runaway solutions and select the solutions which satisfy the Newtonian
equationẍµ = f µ when the radiation reaction is negligible. Of course, iff µ is the Lorentz
force per unit mass (2), we have to put it to equal 0 on the right-hand side of expression (6),
but we want to keep the discussion a bit more general and consider also non-electromagnetic
external forces.

Condition (5) is nonlinear and cannot be exactly solved except in rather trivial cases. In
consequence an approximation scheme is necessary. The limit condition and the fact that
τ0 is very small in many situations of interest suggest using an expansion in powers ofτ0.
This has been discussed in detail by Sanz [16] whenf µ is the Lorentz force. However,
the convergence of the method has not been analysed and the complexity of the actual
expressions for the expansion coefficients grows very fast. An alternative method is to
construct a series of successive approximationsẍµ = ξµn (with n = 0, 1, . . .) given by

ẍµ = ξµ0 ≡ f µ (7)

ẍµ = ξµ1 ≡ f µ + τ0

(
∂f µ

∂τ
+ ∂f

µ

∂xν
ẋν + ∂f

µ

∂ẋν
f ν − f

νfν

c2
ẋµ
)

(8)

ẍµ = ξµn+1 ≡ f µ + τ0

(
∂ξ

µ
n

∂τ
+ ∂ξ

µ
n

∂xν
ẋν + ∂ξ

µ
n

∂ẋν
ξ νn −

ξνn ξnν

c2
ẋµ
)
. (9)

By construction, the limit of this succession, if it exists, will satisfy conditions (5) and (6)
and will be a Newtonian equation of motion with no runaway solutions. Of course, in
practice, one could use one of the approximations, for a finiten, in the above sequence.
Using equation (7) amounts to completely neglecting the radiation reaction and it is used
in (8) to compute a first approximation to that reaction. Some textbooks [1, 14] suggest
using the first approximation (8) and it has even been proposed as the exact equation of
motion [20], but we do not want to imposea priori a limit to the approximation accuracy,
which in practice may be estimated only if one is able to compute the next approximation
to see if it is negligible or not.

Of course, the complexity of the explicit expressions in the sequence of approximations
will grow even faster than in the power series method, but we are not interested here in the
analytical expressions, instead we are interested in a numerical method to find the physical
solutions of the Lorentz–Dirac equation, and the successive approximations are far more
appropriate to construct the numerical algorithm than the power series.

Until now we have only considered the Lorentz–Dirac equation, but it should be obvious
that nothing in the construction of successive approximations depends on the details of that
equation. The same method may be applied, in principle, to any equation which has a
small parameter and has a lower order when the latter vanishes [17, 18]. In particular,
we are also interested in the non-relativistic limit of the Lorentz–Dirac equation and the
Abraham-Lorentz equation:

ẍ = f + τ0
...
x (10)

where a dot indicates derivative with respect to timet .
Before we discuss the numerical method, we will use this simpler equation to consider a

couple of linear one-dimensional cases in which the sequence can be explicitly constructed
and its convergence analysed. This will help us gain an insight into the method of successive
approximations.
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3. Two particular cases

3.1. Time-dependent force

Let us assume that the electron moves in a straight line under the action of a prescribed
external force per unit massf (t). The Abraham–Lorentz equation

ẍ = f (t)+ τ0
...
x (11)

can be equivalently written as follows

ẍ =
∫ ∞

0
e−uf (t + τ0u) du+ Cet/τ0 (12)

whereC is an arbitrary constant. This expression shows explicitly that most of the solutions
will blow up as t → ∞ and are singular in the limitτ0 → 0. One may eliminate both
problems by assuming that the true equation of motion is the one corresponding to the
particular null value for the first integralC:

ẍ =
∫ ∞

0
e−uf (t + τ0u) du. (13)

This is precisely the integro-differential equation used by several authors [2, 4]. On the
other hand, the successive approximations of the previous section are

ẍ = ξn(t) ≡
n∑
k=0

τ k0f
(k)(t) (14)

and the exact order reduction is

ẍ = ξ(t) ≡
∞∑
k=0

τ k0f
(k)(t) (15)

which is equivalent to (13), as can be seen by integrating term-by-term the Taylor expansion
of f (t + τ0u).

3.2. Harmonic force

Let us now assume that the electron moves in a one-dimensional harmonic potential:

ẍ = −ω2
0x + τ0

...
x. (16)

This linear equation may be written, in terms of the arbitrary constantC, as follows:

ẍ + γ ẋ + ω2x = Ceλt (17)

whereω2, γ andλ are the only real solutions of the equation set

ω2 = ω2
0 − τ0ω

2γ (18)

γ = τ0
(
ω2− γ 2

)
(19)

λ = 1

τ0
+ γ (20)

and their explicit expressions (see the appendix) are given by

γ = (α − 1)2

3ατ0
ω =

√
γ

τ0
+ γ 2 λ = 1

τ0
+ γ (21)
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with

α ≡
[√

1+ 27
4 τ

2
0ω

2
0 +

√
27
4 τ

2
0ω

2
0

]2/3

. (22)

Since eliminating the runaway (singular) solutions amounts to takingC = 0 in equation (17),
the true equation of motion will be

ẍ + γ ẋ + ω2x = 0 (23)

which, as expected, describes a damped harmonic oscillator whose frequency and damping
coefficient differ from those corresponding to the free oscillator:

ω = ω0[1− 1
2τ

2
0ω

2
0 +O(τ 4

0ω
4
0)] (24)

γ = 1

τ0
[τ 2

0ω
2
0 +O(τ 4

0ω
4
0)]. (25)

In this case, the successive approximations are all damped linear oscillators,

ẍ + γnẋ + ω2
nx = 0 (n = 0, 1, . . .) (26)

and their coefficients satisfy the following recurrence:

ω2
n+1 = ω2

0 − τ0ω
2
nγn (27)

γn+1 = τ0(ω
2
n − γ 2

n ) (28)

with γ0 = 0. In consequence, if the sequence of approximations converge, the limit will
be the oscillator (23) withω and γ as defined by (18) and (19). We see, thus, that if
the method is convergent it will produce the correct order reduction. Furthermore, in this
particular case the method’s convergence can be readily analysed because we can consider
the discrete dynamical system given by the recurrence(ω2

n, γn) −→ (ω2
n+1, γn+1). As shown

in the appendix, this recurrence has exactly one fixed point, the only real solution of (18)
and (19), and the initial point(ω2

0, 0) corresponds to an orbit that converges to that fixed
point if and only if the following condition holds:

τ0ω0 <

√
23+ 7

√
13

54
' 0.95. (29)

This proves that the successive approximations converge to the regular order reduction
when (29) is satisfied.

In consequence, we see that the method of successive approximations gives the desired
result for a large parameter range: it is enough to have a free oscillator period a few times
higher thanτ0. Notice that the order reduction (23) exists for all values ofω0, even if the
corresponding fixed point is unstable. In the latter case the approximation method will fail
to provide the desired order reduction, but this is not really surprising: even when a solution
exists most approximation methods fail if some convergence conditions are not met.

Although this linear example is very simple, we hope that the result we have found (i.e.
convergence of the method for a wide, though not full, parameter range) will remain true
in other cases of interest. In the following section we will describe a numerical algorithm
that allows us to check our hope and allows us to construct the approximations in other,
more complex, cases.
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4. The numerical iterative method

We have directly translated the iterative method (7)–(9) into a very general numerical code.
The starting point is the embedded Runge–Kutta method of the order of 8 with automatic
step-size control developed by Prince and Dormand in 1981 [21], as described by Haireret
al [22]. This is a continuous method which provides not only the values of the solution at
discrete points but also a seventh-order polynomial which interpolates the solution between
each pair of solution points.

In our algorithm each integration step is repeated iteratively. The first time an equation
of the lower order is used, as in (7), and in each of the remaining iterations the interpolating
polynomial that was computed in the previous one is used to compute the derivatives of
the solution. This is the numerical equivalent of iteration (9). At each iteration an equation
of the lower order is solved and the iterations are repeated either a prescribed number
of times (this is equivalent to truncating the method for some given value ofn) or until
the difference between the estimations of the last two iterations is below some prescribed
maximum relative error.

It is also possible to use a combination of the previous two as termination criterion and
if the relative error requirement is not satisfied after the prescribed number of iterations
have been performed, the routine halts with an error. In non-trivial circumstances this is a
practical way to analyse the method’s convergence. It also helps speed up the calculations
with no loss of precision, because at each step the order of iteration (9) is only high enough
to guarantee the desired accuracy. Of course, apart from this automatic selection of the
iteration order, the routine also selects automatically the step size necessary to have the
estimated truncation error below another prescribed tolerance.

We have checked this routine in a number of ways. First, we have written another
two routines of a smaller order: a Dormand–Prince method of fifth order (which provides
a fourth-order interpolating polynomial [23, 22]) and the classical Runge–Kutta method of
fourth order. In the latter case the third-order interpolating polynomial is constructed by
using Hermite interpolation. We have found that the three routines give the same results,
but the required computing times vary greatly. In particular, the Runge–Kutta code is far
less efficient and we have used it only to check the other two.

The accuracy of the numerical results have also been checked by using the known exact
solution corresponding to the linear cases discussed in section 3. We have obtained a very
good agreement, whose exact value depends on the prescribed maximum relative error.

Fortunately, it is always possible to check the results given by this method, even if the
analytic solution is not known. After computing the desired solution forwards, it is enough
to start from the endpoint and integrate the equation backwards. Since the iterative routine
provides the endpoint, it is not necessary to start integrating backward from future infinity,
or to estimate the final values which would correspond to the desired initial ones.

It should be stressed that the routines are very general and can be used with any equation
or system of equations for which a method of successive approximations of this type is likely
to converge.

5. A capture process

To show the method’s performance we will first consider the classical capture of a relativistic
point charge,e, by a static Coulombian centre of the opposite sign. In a system of units in
which the unit length is the classical electron radiusr0 ≡ e2/mc2 and c = 1, if the initial
position isx0 = (50, 0) and the initial velocity isẋ0 = (0, 0.085), the orbits obtained with
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(a) (b)

(c) (d) Figure 1. Capture of a point charge
by a fixed charge of the opposite
sign. (a) The radiation reaction is
neglected. (b) The orbit is computed
by integrating forward the Lorentz–
Dirac equation. (c) The orbit is
computed by integrating backward the
Lorentz–Dirac equation. (d) The
orbit is obtained by using the first
iteration (8). The starting point is
(50r0, 0).

different approximations are displayed in figure 1. When the radiation reaction is completely
neglected (which amounts to using the Lorentz equations (2)–(7)) one obtains the special
relativistic equivalent of the Keplerian ellipses: a precessing orbit.

In figure 1(b) there is an orbit that was computed by integrating forward the Lorentz–
Dirac equation by allowing the routine to iterate the process until the relative difference
between two consecutive approximations (7) is below 10−10. The eccentricity loss which is
predicted by Landau and Lifshitz [14] by making use of further approximations is apparent.
The routine stops due to lack of convergence when the radial distance is below 3r0. This
is not surprising and, as mentioned below, it only happens near the smallest distance which
can be attained by a standard numerical routine before the numerical errors are too large.

Until now we have computed what we hope to be a good approximations to the capture
orbit, we can start from its last point and integrate backward the exact Lorentz–Dirac
equation with a standard routine to check if the previous solution satisfies that equation.
The result is displayed in figure 1(c) and we see that both orbits are identical at the figure
resolution.

Finally, by simply changing a couple of control parameters, we may use the same
routine to construct numerically the first approximation (8), without having to compute
and enter by hand the cumbersome explicit expression on its right-hand side. We see in
figure 1(d) that it describes the capture rather well. The error is only higher than 1% in the
last revolution. To get a lower relative error, more iterations are needed. In particular, for
an error under 10−10 as described above, the routine had to iterate each step a number of
times which varied from two (near the starting point) to more than 20 (in the final steps).
We have depicted this solution to stress the fact that, although there is no convergence test
in this case, the routine is not able to compute a much longer piece of orbit. Approximately
after an additional quarter of a revolution it halts because of the big numerical instabilities
induced by the high values of the acceleration near the Coulombian centre. At such small
distances more sophisticated methods are necessary.

On the other hand, nothing guarantees that the order reduction (4) exists for all values of
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Figure 2. Scattering of a point charge by three
equal fixed charges. The orbits are computed by
using approximations (7)–(9) forn = 0, 1, 2, 3, 4
are labelled with then value. Orbit LD is computed
by integrating forward the Lorentz–Dirac equation
and then checked by integrating backwards from
the final point. The initial point for all forward
orbits is labelled I.

the variables. For instance, if the capture process is one-dimensional, it has been shown [6]
that all solutions are unphysical. Even if the orbit initially looks reasonable, it will finally
invert its direction and become runaway. Thus, in this case we do not expect a global order
reduction to exist and, in consequence, the numerical routine must fail at some point. In fact,
if we take (50, 0) as its initial velocity and integrate forward the Lorentz–Dirac equation,
we find a solution which is very close to one corresponding to the Lorentz equation but the
integration fails when the particle is below 4.5.

6. A scattering process

It is easy to find a case in which even a moderate error tolerance requires using high-order
approximations. Let us consider the classical scattering of a point relativistic charge,e, by
three static Coulombian centres of the same charge in the vertices of an equilateral triangle
of side 10. The particle orbit starts from the pointx0 = (−20,−0.438 75) with velocity
ẋ0 = (0.85, 0). Since a simple numerical experiment shows that the scattering is chaotic, we
expect that any error in the numerical code or in the approximation method may introduce
big changes in the computed orbit. Figure 2 shows that this is indeed the case, where the
orbits computed by using approximations (7)–(9) forn = 0, 1, 2, 3, 4 are collected. We
see that the convergence has yet to be reached. If we ask the routine to integrate forward
the Lorentz–Dirac equation with high accuracy (relative difference between the last two
approximations below 10−10), the routine needs to use between 7 and 28 iterations at each
step. The computed orbit is labelled LD and, once its final conditions have been computed,
may be checked by integrating backward the exact Lorentz–Dirac equation: the agreement
is very good and the result completely indistinguishable at the figure resolution.

Since the system has a sensitive dependence on the initial conditions, estimating the final
configuration that produces, by backward integration, the selected initial conditions would
require important computational work. For instance, the exit velocity when the particle
crosses the circle of radius 20 again depicted in the figure is|ẋ| = 0.69, which is very
different from the initial value.

Since we are able to integrate forward the Lorentz–Dirac equation, it is now easy to
compute scattering functions. Let us assume that the test particle is sent from the points
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Figure 3. Scattering functionθ(d)
when (a) the radiation reaction is
neglected, (b) the first iteration (8)
is used, and (c) the Lorentz–Dirac
equation is solved forwards.

x0 = (−50, d) with velocity ẋ0 = (0.85, 0) for 10 000 values of the impact parameter
0.25 6 d 6 0.35. We will compute the angle,θ , between the velocity and thex-axis
when the particle exits the scattering region (which we define somewhat arbitrarily by the
condition|x| < 50). In figure 3(a) the scattering angleθ(d) is displayed, we obtain it when
the radiation reaction is neglected and the Lorentz equation (7) is used. The characteristic
discontinuities of chaotic scattering are clearly visible and may be confirmed if successive
blow-ups are computed.

Chaotic scattering is usually studied in conservative systems and its origin is tied to
the existence of a chaotic non-attracting set of unstable periodic orbits that remain in the
scattering region forever [9]. Solutions that get close to one of these periodic orbits will
remain near it for a long time and the accumulated defocusing effect of successive reflections
around scattering centres will produce a sensitive dependence on the initial conditions.
It would be interesting to see what happens when the radiation reaction is taken into
account. One expects that the energy loss will destroy most of the periodic orbits but,
on the other hand, the possibility of remaining in the scattering region for long times still
exists. In figure 3(b) we display the scattering function that is obtained when the first
approximation (8) is used and in figure 3(c) we display the result corresponding to the
forward integration of the Lorentz–Dirac equation with the same high accuracy mentioned
above. We see that from a qualitative point of view the radiation reaction appears as a
shift of the scattering functionθ(d) and that the first iteration (8) slightly underestimates
the exact value of this shift. A more detailed study of the chaotic scattering is beyond the
scope of this work and will be described elsewhere.

7. Conclusions

It has been shown that equation hierarchies of the form (7)–(9) are not only of theoretical
interest but may be used to solve numerical problems in practice. A linear example in which
everything may be analytically computed has been analysed to gain some insight into the
general problem. We have described a set of routines which may be used to test with great
ease the convergence of the method and to compute with low effort some solutions of the
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Lorentz–Dirac equation (and equations with the same structure [17, 18]) that are difficult or
impossible to obtain by means of previously described methods.

As expected from the analysis in section 3, we have found that the routine does not
always converge, but it performs surprisingly well in many cases and no runaway solution
is induced by numerical errors.

Acknowledgments

I am greatly indebted to Llúıs Bel for many discussions in which the main ideas in this work
have evolved. I thank the Laboratoire de Gravitation et Cosmologie Rélativistes (CNRS et
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Appendix

We will study here the discrete dynamical system(ω2
n, γn) −→ (ω2

n+1, γn+1) defined in (27),
(28). To simplify the notation we will introduce the non-dimensional quantitiesx ≡ τ 2

0ω
2

andy ≡ τ0γ as dynamical variables. The recurrence is then

xn+1 = x0− xnyn (30)

yn+1 = xn − y2
n (31)

with x0 = τ 2
0ω

2
0 andy0 = 0. The fixed points of this dynamical systems aregiven by

x = x0− xy (32)

y = x − y2 (33)

or, equivalently, by

y(1+ y)2 = x0 (34)

x = y(1+ y). (35)

For x0 > 0 the cubic (34) has a single real root, which happens to be positive and given by

y = (α − 1)2

3α
α ≡

[√
1+ 27

4 x0+
√

27
4 x0

]2/3

. (36)

In consequence, the dynamical system has exactly one fixed point. To study its stability we
have to compute its characteristic multipliers, i.e. the eigenvalues of the differential of the
map(x, y) −→ (x0− xy, x − y2), which can be written as follows:

λ = −3y ±√−y(4+ 3y)

2
. (37)

Since y is given in equation (36), these eigenvalues are complex and the condition
for asymptotic stability,|λ| < 1, is y < (

√
13− 1)/6 or, as a consequence of (34),

x0 < (23+7
√

13)/54. The latter is precisely condition (29). We have checked numerically
that (x0, 0) is in the basin of attraction of the fixed point and the corresponding orbit does
in fact tend to the fixed point when the former condition holds.
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